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Abstract. We present a computationally efficient. cell dynamical system which mimics the 
two-component Ginzburg-Landau equation. This model is used to numerically study the 
time-dependent behaviour of the vorticity number for a two-dimensional lattice. We find 
that the vorticity number initially decays exponentially in time and subsequently shows a 
power-law decay in time ( - l i t ,  where I is time). 

The transition of a system from the normal to the superconducting state is mediated 
by the formation of vortices and antivortices and their subsequent annihilation. The 
dynamics of this transition is described by a phenomenological partial differential 
equation, the two-component time-dependent Ginzburg-Landau (TDGL) equation [I]: 

where $ ( r ,  I )  is a complex order parameter field [= A(r, 1 )  exp(i+(r, t ) ) ]  which depends 
on space ( r )  and time ( I ) .  The coefficients T, g and D are real and positive and are 
phenomenological measures of the quench-depth, the coupling strength and the 
diffusion constant respectively. Typically, ( I )  describes a system in the normal state 
which is quenched below the superconducting transition temperature at time f =O.  The 
normal state is characterized by an order parameter field which consists of random 
fluctuations about a zero background. The dynamics of (1) is characterized by the 
appearance of vortices and antivortices, which are singularities of the phase field 
$ ( r ,  1 ) .  (This concept will be elaborated shortly.) More recently, equations similar to 
( l ) ,  but with complex coefficients, have arisen in the study of pattern-forming systems 
such as amplitude equations ([2] and references therein) and as general models for 
investigating chaos [3]. 

The two-component TDGL equation has been the subject of much numerical and 
analytic work [4]. However, there are no clear numerical results on the time-dependent 
behaviour of the vorticity/antivorticity or the autocorrelation functions. Loft and 
DeCrand [SI have performed a Langevin simulation of the planar XY model [6], 
which is closely related to (1) (C Dasgupta, private communication). Their results 
indicate that the vorticity/antivorticity number (to be defined shortly) initially decays 
exponentially in time until a critical vortex density is reached. Subsequently, the 
vorticityjantivorticity number decays as a power-law in time ( - l i t ) .  However, their 
numerical results are not clear, perhaps as a result of the intrinsic limitations of the 
Langevin simulation technique. In this paper, we present a computationally efficient, 
cell dynamical system (CDS) model [7-8] which mimics the two-component TDGL 
equation. We use this model to obtain clear numerical evidence of a crossover in the 
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temporal behaviour of the vorticity/antivorticity number from an 'exponential decay' 
regime to a 'power-law decay as I / f '  regime. By an appropriate rescaling of the complex 
order parameter field'+(r, 1). space r and time 1, we can eliminate all the constants in 
(1). This leads to the dimensionless equation 

which is !he form F e  consider in this p2per. Gena znd Psi [q hp?.e described how 
computationally efficient CDS models for equations like (2) may be derived. Their 
scheme involves solving (analytically or numerically) the homogeneous part of (2). 
The solution of the homogeneous part is then used as the basis of a numerical scheme 
which is numerically more efficient than the conventional schemes. The enhanced 
numerical efficiency is a result of the new scheme being numerically stable and 
reasonab!e [RI, even a! high va!ues of !he mesh sizes in time and space. To i!!estra!c 
the application of this scheme to (2), we consider the homogeneous part of (2): 

where r is merely a parameter. Equation (3) is easily solved analytically as 

Following Oono and Pun [8], this suggests the following computationally efficient 
scheme for (2): 

where A,+(r, I )  is the isotropically discretized Laplacian at the point r, and Af, A x  
are the size of the time and space increments respectively. A similar scheme has been 
used by Bohr e f  a /  [lo] to study the onset of defect-mediated turbulence in systems 
similar to ( I ) ,  but with complex coefficients. We do  not use the scheme ( 5 )  but rather 
an even more efficient scheme which utiiizes a iocai mapping which is piecewise iinear 
and gives a more rapid relaxation to the local fixed points. Thus, we use the scheme 

+(c  f + l ) = f ( + ( r ,  l ) ) + a A d ( r ,  t )  ( 6 )  

where the time f is incremented in discrete steps, in the spirit of cell dynamical 
modelling [7]. In ( 6 ) ,  the function f ( x )  has the form 

and A and (I are arbitrary parameters (a may be considered to be the counterpart of 
Ar/(Ax)2 in (5)). For appropriately chosen values of the parameters A and (I, this 
scheme enables an accelerated access to the asymptotic regime and is in the same 
dynamicai universaiity ciass as ( 5 ) .  For the one-component TDGL equation, we have 
numerically demonstrated this in previous papers [E]. We have confirmed this numeri- 
cally for the two-component TDGL equation also. With an appropriate rescaling of 
time, the results obtained from ( 5 )  are identical to those obtained from (6). Thus, we 
present here only results obtained from (6).  As already mentioned, the difference 
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between the time scales of (5) and (6) is a result of the difference in the local mapping 
of the two schemes. The local mapping in both the schemes has an unstable fixed point 
(at $ ( r ,  t )  = 0) and a circle of stable fixed points (at I$(r ,  t)l = l), giving rise to similar 
dynamics. However, the local mapping of (6) relaxes to the fixed points considerably 
more rapidly than the local mapping of (5). Hence, the scheme (6) enables us to access 
the asymptotic regime more rapidly. The parameters A and n should be chosen so as 
to give reasonable numerical results [SI. In this paper, we use the parameter values 
A = 1.3 and a = 0.5. If we match the behaviour of the local mappings in (5) and ( 6 )  
for small values of $ ( r ,  1 ) .  these values of A and a correspond to the mesh sizes 
At-0 .262  and Ax-=O.724 in the new scheme (5). For the conventional schemes (e.g. 
explicit discretization scheme), these mesh sizes are unreasonably large for the simula- 
tion of (2). 

We have implemented (6) on a square lattice with periodic boundary conditions. 
Figure 1 shows the evolution of a 40x40 lattice from an initial condition consisting 
of random fluctuations of maximum amplitude 0.05 (and random phase) about a zero 
background. The configurations are labelled by the number of update steps (sub- 
sequently referred to as 'time') which they correspond to and are drawn as follows. 

Time = 20 Time = 40 

Time = 60 Time = 100 

Figure 1. Temporal evolution of our cell dynamical model for a 40x40 lattice. The initial 
condition (time =0) consists of random fluctuations of maximum amplitude 0.05 (and 
random phase) about a zero background. At each point of the lattice, we draw a line whore 
length is proportional to the amplitude of the complex order parameter at that point. This 
line is inclined t o  the positive x-direction at an angle equal to the phase of the complex 
order parameter. The 'time' which labels each configuration refen to the number of update 
steps from the initial condition. 
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At each point of the lattice, we draw a line whose length is proportional to the amplitude 
A(r, t )  of the complex order parameter field $(r ,  t ) .  This line is inclined to the positive 
x-direction at an angle corresponding to the phase + ( r ,  f )  of the complex order 
parameter field. As mentioned earlier, vortices and antivortices constitute singularities 
of the phase field. Thus, the total variation of the phase field around a closed loop 
(viz, A+ =$d+)  is non-zero if the loop encloses vortices or antivortices. The vorticity 
or antivorticity number is the integer part of A+/(27r), say n. If n is positive (negative), 
the closed loop is said to include a vortex (antivortex). In figure 1, the earlier 
configurations (e.g. the picture at 20 update steps) consists of a large number of vortices 
and antivortices which annihilate each other through a variety of mechanisms. This 
gives rise to a dilute gas of vortices and antivortices (e.g. the picture at 100 update 
steps). Because of finite-size effects, the ultimate configuration of this lattice (not shown 
in figure 1) corresponds to a spatially uniform complex order parameter field, with an 
amplitude of 1 and a constant phase angle which depends on the initial condition 
chosen. This is unphysical as the thermodynamic ground state of this system corre- 
sponds to a diffuse gas of vortices and antivortices [ 5 , 6 ] .  For larger lattices, the 
(unphysical) uniform state is accessed at later times, as expected. Figure 2 shows the 
variation of the real and imaginary components of the complex order parameter field 

Time = 20 Time = 40 

- 
-' 

-1 , , , , , , , , , I , ,  , , , , , . r i  

Time = 60 Time = 100 

0 10 20 30 40 0 10 20 30 40 
i i 

Figure 2. Variation of the real and imaginary components of the complex order parameter 
along a diagonal section (i = j )  of  figure 1. The real component ($ , ( I .  I ) )  is denoted by a 
heavy line and the imaginary component I ) )  is denoted by a light line. 
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along the diagonal ( i = j )  of the 40x40 lattice for the configurations shown in figure 
1 .  The real component (ILl(r, ~ ) = R e [ $ ( r ,  t ) ] )  is denoted by a heavy line and the 
imaginary component (#*(I, I )  = Im[ $( r, I ) ] )  is denoted by a light line. This indicates 
the rapidity ( ( - 4 0 )  with which the amplitude saturates out to the equilibrium value 
of 1. 

To study the time evolution of the vorticity number of the lattice, we use the 
definition of vorticity number given by Tobochnik and Chester 1111. Vortices and 
antivortices are considered to live on a 1 x 1 square. To compute the vorticity number 
associated with a particular 1 x 1 square, we start off at one of the corners of the square 
and traverse the comers in a clockwise direction. The net change of the phase angle 
around the square is the sum of phase angle differences (defined to lie between -r 
and v )  between the complex order parameter field at successive corners of the square. 
As stated earlier, the vorticity number or antivorticity number associated with the 1 x 1 
square is the integer part of the net change of the phase angle divided by 27r. The net 
vorticity number (antivorticity number) of the lattice is the sum of the vorticity numbers 
(antivorticity numbers) associated with each square. Figure 3 shows the time-depen- 
dence of the vorticity number ( N , )  for a l00x 100 lattice. The data shown in figure 3 
was obtained as an average over 20 runs from different initial conditions, each consisting 
of random fluctuations of maximum amplitude 0.05 (and random phase) about a zero 

400 

300 

i 
0 02 04 06 08 

t-' 

0 20 40 60 80 100 

t 
Flgure 3. Time dependence of thc  vorticity number N, (defined in the text) for a lOOx 100 
lattice. The data i s  computed as an average over 20 diRerent initial conditions of the type 
used in figure I .  The left insel figure shows In(N,) versus I for earlier lime5 (F6) and the 
right inset figure shows Nv versus t-' for later times (as). 
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background. The solid line in the main figure shows N ,  as a function of time 1. The 
crosses show the temporal behaviour of the antivorticity number as a function of time. 
This data is superposed on the main figure to show that, within statistical fluctuations, 
the vorticity and antivorticity numbers are the same. The inset figures show the temporal 
dependence of N,  for earlier times (left inset) and later times (right inset). For earlier 
times ( < 6 ) ,  we plot In(N,) versus f in the left inset figure, showing that the vorticity 
number initially decays exponentially in time. This is the result of vortex-antivortex 
annihilation at a rate proportional to the number of vortex-antivortex pairs [ 5 ] .  For 
later times (315) ,  the system is dominated by isolated vortices and antivortices which 
annihilate through Brownian diffusion [ 5 ] ,  giving rise to a power-law decay as N , -  l / f .  
This is shown in the right inset figure, where we plot N, versus l/r. 

At this stage, a general remark about the errors involved in these calculations is in 
order. The dynamics is deterministic so the only source of errors is numerical inaccuracy. 
All our calculations were performed in the double precision mode. Furthermore, the 
dynamics is always attractive (to stable fixed points). Thus, we do not expect large 
errors in these calculations. 

To summarize: we have presented a simple cell dynamical model which mimics 
the two-component TDGL equation (2). This model is easily implemented numerically 
and gives a rapid evolution from an arbitrary initial condition. We have used this 
model to obtain unambiguous numerical results on the temporal behaviour of the 
vorticity number. These results show a quick crossover from an initial 'exponential 
decay' regime to a subsequent 'power-law decay as 111' regime. 
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